首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295189篇
  免费   12037篇
  国内免费   10459篇
测绘学   9594篇
大气科学   26236篇
地球物理   63775篇
地质学   107416篇
海洋学   26049篇
天文学   57571篇
综合类   4563篇
自然地理   22481篇
  2022年   2634篇
  2021年   3773篇
  2020年   3939篇
  2019年   4446篇
  2018年   6370篇
  2017年   6002篇
  2016年   8318篇
  2015年   6087篇
  2014年   9131篇
  2013年   16368篇
  2012年   8984篇
  2011年   10818篇
  2010年   9997篇
  2009年   12334篇
  2008年   10922篇
  2007年   10443篇
  2006年   11082篇
  2005年   9179篇
  2004年   8751篇
  2003年   8240篇
  2002年   7735篇
  2001年   6993篇
  2000年   6679篇
  1999年   6307篇
  1998年   6025篇
  1997年   5742篇
  1996年   5225篇
  1995年   5226篇
  1994年   4801篇
  1993年   4449篇
  1992年   4061篇
  1991年   3972篇
  1990年   3956篇
  1989年   3650篇
  1988年   3435篇
  1987年   3864篇
  1986年   3399篇
  1985年   4218篇
  1984年   4733篇
  1983年   4386篇
  1982年   4298篇
  1981年   3910篇
  1980年   3623篇
  1979年   3474篇
  1978年   3461篇
  1977年   3235篇
  1976年   2977篇
  1975年   2910篇
  1974年   2872篇
  1973年   3079篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Barrier islands are important landforms in many coastal systems around the globe. Studies of modern barrier island systems are mostly limited to those of siliciclastic realms, where the islands are recognized as mobile features that form on transgressive coastlines and migrate landward as sea-level rises. Barrier islands of the ‘Great Pearl Bank’ along the United Arab Emirates coast are the best-known carbonate examples. These Holocene islands, however, are interpreted to be anchored by older deposits and immobile. The mid-Holocene to late-Holocene depositional system at Al Ruwais, northern Qatar, provides an example of a mobile carbonate barrier island system, perhaps more similar to siliciclastic equivalents. Sedimentological and petrographic analyses, as well as 14C-dating of shells and biogenic remains from vibracored sediments and surface deposits, show that after 7000 years ago a barrier system with a narrow back-barrier lagoon formed along what is now an exposed coastal zone, while, contemporaneously, a laterally-extensive coral reef was forming immediately offshore. After 1400 years ago the barrier system was forced to step ca 3 km seaward in response to a sea-level fall of less than 2 m, where it re-established itself directly on the mid-Holocene reef. Since that time, the barrier has retreated landward as much as 1000 m to its current position, exposing previously-deposited back-barrier lagoonal sediment at the open-coast shoreline. In modern neritic warm-water carbonate settings mobile barrier island systems are rare. Their construction and migration may be inhibited by reef formation, early cementation, and the relative inefficiency of sourcing beach sediments from open carbonate shelves. Carbonate barrier island systems likely formed more commonly during geological periods when ramps and unrimmed shelves predominated and in calcite seas, when meteoric cementation was minimized as a result of initial calcitic allochem mineralogy. As with their siliciclastic analogues, however, recognition of the influence of these transient landforms in the rock record is challenging.  相似文献   
92.
Hekla volcano is a major producer of large, widespread silicic tephras. About 3000 years ago, the dominant eruption mode shifted from infrequent large (>1 km3) to more frequent moderate (<1 km3) eruptions. In the following two millennia ≥20 explosive silicic-to-intermediate eruptions occurred, and six or more basaltic. Three categories can be identified with dacite/andesite to basaltic andesite in the oldest eruptions through basaltic andesite to basalt in the youngest eruptions. Ten tephra layers of the first category have distinct field characteristics: a pale lower unit and a dark upper unit (two coloured or TC-layers). Colour separation is sharp indicating a stratified magma chamber origin. The lower unit is dominantly andesitic (61–63% SiO2), while the upper unit is basaltic andesite (53–57% SiO2). Volumes of the eight largest TC-layers range from 0.2 to 0.7 km3 as freshly fallen. Radiocarbon and soil accumulation rate dates constrain the TC-layers to between 3000 and 2200 years ago. Two of these (~2890 and ~2920 b2k) are likely to occur overseas. Low SiO2 in the last erupted tephra of the TC-layers is comparable to that of historical Hekla lavas, implying a final effusive phase. The Hekla edifice may, consequently, be younger than 3000 years.  相似文献   
93.
The late Quaternary evolution of central-eastern Brazil has been under-researched. Questions remain as to the origin of the Cerrado, a highly endangered biome, and other types of vegetation, such as the Capões – small vegetation islands of semi-deciduous and mountain forests. We investigated the factors that influenced the expansion and contraction of the Cerrado and Capões during the late Quaternary (last ~35 ka), using a multi-proxy approach: stable isotopes (δ13C, δ15N), geochemistry, pollen and multivariate statistics derived from a peat core (Pinheiro mire, Serra do Espinhaço Meridional). Five major shifts in precipitation, temperature, vegetation and landscape stability occurred at different timescales. Our study revealed that changes in the South Atlantic Convergence Zone (SACZ) seem to have been coeval with these shifts: from the Late Glacial Maximum to mid-Holocene the SACZ remained near (~29.6 to ~16.5k cal a bp ) and over (~16.5 to ~6.1 k cal a bp ) the study area, providing humidity to the region. This challenges previous research which suggested that climate was drier for this time period. At present, the Capões are likely to be a remnant of a more humid climate; meanwhile, the Cerrado biome seems to have stablished in the late Holocene, after ~3.1 k cal a bp .  相似文献   
94.
高顶山矿区位于广安华蓥市城区东南约5km处。长期的采矿活动,导致区内矿山地质环境问题突出,严重影响华蓥山地区人民的生命财产安全。矿山地质环境问题亟待解决。本文通过分析区内主要存在的矿山地质环境问题,提出通过矿山地质灾害、矿山土地恢复、矿山地形地貌景观恢复治理,河道综合整治、道路修复、生态保育、产业提升等措施;消除安全隐患,保障区内人民生命财产安全;改善生态环境,实现华蓥山地区生态环境全面恢复,生态环境质量提升,提高环境承载力,实现区内"山青、水秀、林美、田良"的目标。并对区内的产业转型升级进行了探讨,提出将高顶山矿区建设成具有科普和教育价值的旅游景观目的地;利用矿区独具特色工业人文景观和别致的自然景观,将高顶山矿区建设成集"科普、休闲、康养、户外、探秘"五大功能于一体的矿山公园,推动矿业经济转型升级,促进产业结构转型和经济社会可持续发展。  相似文献   
95.
The 2 to 5 km thick, sandstone-dominated (>90%) Jura Quartzite is an extreme example of a mature Neoproterozoic sandstone, previously interpreted as a tide-influenced shelf deposit and herein re-interpreted within a fluvio-tidal deltaic depositional model. Three issues are addressed: (i) evidence for the re-interpretation from tidal shelf to tidal delta; (ii) reasons for vertical facies uniformity; and (iii) sand supply mechanisms to form thick tidal-shelf sandstones. The predominant facies (compound cross-bedded, coarse-grained sandstones) represents the lower parts of metres to tens of metres high, transverse fluvio-tidal bedforms with superimposed smaller bedforms. Ubiquitous erosional surfaces, some with granule–pebble lags, record erosion of the upper parts of those bedforms. There was selective preservation of the higher energy, topographically-lower, parts of channel-bar systems. Strongly asymmetrical, bimodal, palaeocurrents are interpreted as due to associated selective preservation of fluvially-enhanced ebb tidal currents. Finer-grained facies are scarce, due largely to suspended sediment bypass. They record deposition in lower-energy environments, including channel mouth bars, between and down depositional-dip of higher energy fluvio-ebb tidal bars. The lack of wave-formed sedimentary structures and low continuity of mudstone and sandstone interbeds, support deposition in a non-shelf setting. Hence, a sand-rich, fluvial–tidal, current-dominated, largely sub-tidal, delta setting is proposed. This new interpretation avoids the problem of transporting large amounts of coarse sand to a shelf. Facies uniformity and vertical stacking are likely due to sediment oversupply and bypass rather than balanced sediment supply and subsidence rates. However, facies evidence of relative sea level changes is difficult to recognise, which is attributed to: (i) the areally extensive and polygenetic nature of the preserved facies, and (ii) a large stored sediment buffer that dampened response to relative sea-level and/or sediment supply changes. Consideration of preservation bias towards high-energy deposits may be more generally relevant, especially to thick Neoproterozoic and Lower Palaeozoic marine sandstones.  相似文献   
96.
Doklady Earth Sciences - This paper analyzes data on the concentration and dynamics of 137Cs and 90Sr in marine organisms on the Arctic shelf under modern conditions (2013–2018). It is shown...  相似文献   
97.
Izvestiya, Atmospheric and Oceanic Physics - The features of the geomagnetic noise distribution over frequencies in different bandwidths and in the signal accumulation mode are investigated. It is...  相似文献   
98.
Lukashina  N. P. 《Oceanology》2019,59(1):123-132
Oceanology - Based on benthic foraminifera from three sediment cores, the deep-water circulation near the Hunter Channel (Southwest Atlantic) in the Late Pleistocene and Holocene has been...  相似文献   
99.
Bioeroding sponges belong to the most dominant bioeroders, significantly contributing to the erosion of coral reefs. Some species are tolerant or even benefit from environmental conditions such as ocean warming, acidification, and eutrophication. In consequence, increases in sponge bioerosion have been observed on some coral reefs over the last decades. The Abrolhos Bank is the largest coral reef system in the South Atlantic. It has been affected by sedimentation, eutrophication, overfishing, and climate change, mainly affecting coastal reefs, and at lesser intensity outer ones as well. This study aimed to describe spatial and temporal patterns in bioeroding sponge distribution in carbonate substrates in the Abrolhos Bank. Photo‐quadrats were used to compare bioeroding sponge abundance between two shallow reefs: a coastal, Pedra de Leste (PL), and an outer reef, Parcel dos Abrolhos (PAB). Each individual was delimitated over the substrate by determining the sponge surface through a line connecting the outermost papillae. The study was conducted over 6 years in 2008–2009 and 2013–2016. Four species of bioeroding sponges were identified: Cliona carteri Ridley, 1881, C. delitrix Pang, 1973, C. cf. schmidtii Ridley, 1881, and Siphonodictyon coralliphagum Rützler, 1971. The distribution and abundance of species varied between the inner and outer reefs and across the years, and displayed certain selectivity for the calcareous substrates recorded. Crustose coralline algae (CCA) were the main substrate excavated by the most abundant bioeroding species, C. carteri, and represented 70% of the substrate types occupied by this sponge (CCA, coral overgrown by CCA and plain coral). The highest abundance of bioeroding sponges observed in photo‐quadrats was 21.3 individuals/m2 at the outer reefs (PAB) in 2014. The abundances or areal extents of bioeroding sponges were up to 10 times greater on the outer reefs than on the coastal ones, where sedimentation is higher and more strongly influenced by siliciclastic material. Moreover, a higher herbivorous fish biomass has been reported on outer reefs which could also influence the higher abundance of bioeroding sponges in outer reefs. During the study period of 6 years, an increase in bioeroding sponge abundance was observed at the outer reefs (PAB), with the sea surface temperature increase. As CCA have an important role in reefal cementation and carbonate production in the Abrolhos reefs, a bioerosion impact might be expected, in particular, on the outer reefs.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号